On support vector regression machines with linguistic interpretation of the kernel matrix
نویسنده
چکیده
Initially, the idea of approximate reasoning using generalized modus ponens and a fuzzy implication is recalled. Next, a fuzzy system based on logical interpretation of if–then rules and with parametric conclusions is presented. Then, it is shown that global and local -insensitive learning of the above fuzzy system may be presented as the learning of a support vector regression machine with a special type of a kernel matrix obtained from clustering. The kernel matrix may be interpreted in terms of linguistic values based on the premises of if–then rules. A new method of obtaining a fuzzy system by means of a support vector machine (SVM) with a data-dependent kernel matrix is introduced. This paper contains examples of a SVM used to design fuzzy models of real-life data. Simulation results show an improvement in the generalization ability of a fuzzy system learned by the new method compared with traditional learning methods. © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملSupport vector machines/relevance vector machine for remote sensing classification: A review
Kernel-based machine learning algorithms are based on mapping data from the original input feature space to a kernel feature space of higher dimensionality to solve a linear problem in that space. Over the last decade, kernel based classification and regression approaches such as support vector machines have widely been used in remote sensing as well as in various civil engineering applications...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملRemote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 157 شماره
صفحات -
تاریخ انتشار 2006